• Live Chat
  • Register
  • Login
Login with Facebook
ibworldacademy@gmail.com
+91-9818369374
Skype Me™!
Quick Contact

Calculus

1.       If 2x2 – 3y2 = 2, find the two values of  when x = 5.

Working:

 

 

Answer:

…………………………………………..

(Total 4 marks)

 

 

2.       Differentiate y = arccos (1 – 2x2) with respect to x, and simplify your answer.

Working:

 

 

Answer:

…………………………………………..

(Total 4 marks)

 


 

3.       The area of the enclosed region shown in the diagram is defined by

y ³ x2 + 2, y £ ax + 2, where a > 0.

          This region is rotated 360° about the x-axis to form a solid of revolution. Find, in terms of a, the volume of this solid of revolution.

Working:

 

 

Answer:

…………………………………………..

(Total 4 marks)

 


 

4.       Using the substitution u =  x + 1, or otherwise, find the integral

 dx.

Working:

 

 

Answer:

…………………………………………..

(Total 4 marks)

 


 

5.       When air is released from an inflated balloon it is found that the rate of decrease of the volume of the balloon is proportional to the volume of the balloon. This can be represented by the differential equation  = – kv, where v is the volume, t is the time and k is the constant of proportionality.

(a)     If the initial volume of the balloon is v0, find an expression, in terms of k, for the volume of the balloon at time t.

(b)     Find an expression, in terms of k, for the time when the volume is

Working:

 

 

Answers:

(a)   …………………………………………..

(b)       ……………………………………..........

(Total 4 marks)

 


 

6.       A particle moves along a straight line. When it is a distance s from a fixed point, where s > 1, the velocity v is given by v =  Find the acceleration when s = 2.

Working:

 

 

Answer:

…………………………………………..

(Total 4 marks)

 

 

7.       Consider the function f : x  xx2 for –1 £ x £ k, where 1 < k £ 3.

(a)     Sketch the graph of the function f.

(3)

(b)     Find the total finite area enclosed by the graph of f, the x-axis and the line x = k.

(4)

(Total 7 marks)

 


 

8.       Give exact answers in this part of the question.

          The temperature g (t) at time t of a given point of a heated iron rod is given by

g (t) = ,           where t > 0.

(a)     Find the interval where g¢ (t) > 0.

(4)

(b)     Find the interval where g² (t) > 0 and the interval where g² (t) < 0.

(5)

(c)     Find the value of t where the graph of g (t) has a point of inflexion.

(3)

(d)     Let t* be a value of t for which g¢ (t*) = 0 and g² (t*) < 0. Find t*.

(3)

(e)     Find the point where the normal to the graph of g (t) at the point
(t*, g (t*)) meets the t-axis.

(3)

(Total 18 marks)

 

 

9.       The area between the graph of y = ex and the x-axis from x = 0 to x = k (k > 0) is rotated through 360° about the x-axis. Find, in terms of k and e, the volume of the solid generated.

Working:

 

 

Answer:

....……………………………………..........

(Total 4 marks)

 

 

10.     Find the real number k > 1 for which dx = .

Working:

 

 

Answer:

....……………………………………..........

(Total 4 marks)

 

 

11.     The acceleration, a(t) m s–2, of a fast train during the first 80 seconds of motion is given by

a(t) = – t + 2

          where t is the time in seconds. If the train starts from rest at t = 0, find the distance travelled by the train in the first minute.

Working:

 

 

Answer:

....……………………………………..........

(Total 4 marks)

 


 

12.     In the diagram, PTQ is an arc of the parabola y = a2 x2, where a is a positive constant, and PQRS is a rectangle. The area of the rectangle PQRS is equal to the area between the arc PTQ of the parabola and the x-axis.

          Find, in terms of a, the dimensions of the rectangle.

Working:

 

 

Answer:

....……………………………………..........

(Total 4 marks)

 


 

13.     Consider the function fk (x) = , where k Î

(a)     Find the derivative of fk (x), x > 0.

(2)

(b)     Find the interval over which f0 (x) is increasing.
The graph of the function fk (x) is shown below.

(2)

(c)     (i)      Show that the stationary point of fk (x) is at x = ek–1.

(ii)     One x-intercept is at (0, 0). Find the coordinates of the other x-intercept.

(4)

(d)     Find the area enclosed by the curve and the x-axis.

(5)

(e)     Find the equation of the tangent to the curve at A.

(2)

(f)      Show that the area of the triangular region created by the tangent and the
coordinate axes is twice the area enclosed by the curve and the x-axis.

(2)

(g)     Show that the x-intercepts of fk (x) for consecutive values of k form a geometric sequence.

(3)

(Total 20 marks)

 


 

14.     The velocity, v, of an object, at a time t, is given by v = , where t is in seconds and v is in m s–1. Find the distance travelled between t = 0 and t = a.

Working:

 

 

Answer:

..................................................................

(Total 3 marks)

 

 

15.     Find the coordinates of the point which is nearest to the origin on the line

          L: x = 1 – l, y = 2 – 3l, z = 2.

Working:

 

 

Answer:

..................................................................

(Total 3 marks)

 


 

16.     A rectangle is drawn so that its lower vertices are on the x-axis and its upper vertices are on the curve y = sin x, where 0 £ x £ n.

(a)     Write down an expression for the area of the rectangle.

(b)     Find the maximum area of the rectangle.

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 3 marks)

 

 

17.     Find the values of a > 0, such that dx = 0.22.

Working:

 

 

Answer:

..................................................................

(Total 3 marks)

 


 

18.     Let f : x  esin x.

          (a)     Find f ¢ (x).

          There is a point of inflexion on the graph of f, for 0 < x < 1.

(b)     Write down, but do not solve, an equation in terms of x, that would allow you to find the value of x at this point of inflexion.

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 3 marks)

 


 

19.     The diagram shows the graph of y = f¢ (x).

          Indicate, and label clearly, on the graph

(a)     the points where y = f (x) has minimum points;

(b)     the points where y = f (x) has maximum points;

(c)     the points where y = f (x) has points of inflexion.

Working:

(Total 3 marks)

 


 

20.     Let f (x) = ln |x5 – 3x2|, –0.5 < x < 2, x ¹ a, x ¹ b; (a, b are values of x for which f (x) is not defined).

(a)     (i)      Sketch the graph of f (x), indicating on your sketch the number of zeros of f (x). Show also the position of any asymptotes.

(2)

(ii)     Find all the zeros of f (x), (that is, solve f (x) = 0).

(3)

(b)     Find the exact values of a and b.

(3)

(c)     Find f (x), and indicate clearly where f¢ (x) is not defined.

(3)

(d)     Find the exact value of the x-coordinate of the local maximum of f (x), for 0 < x < 1.5. (You may assume that there is no point of inflexion.)

(3)

(e)     Write down the definite integral that represents the area of the region enclosed by f (x) and the x-axis. (Do not evaluate the integral.)

(2)

(Total 16 marks)

 

 

21.     Differentiate from first principles f (x) = cos x.

(Total 8 marks)

 


 

22.     For the function f : x  x2 1n x, x > 0, find the function f¢, the derivative of f with respect to x.

Working:

 

 

Answer:

..................................................................

(Total 3 marks)

 

 

23.     Calculate the area bounded by the graph of y = x sin (x2) and the x-axis, between x = 0 and the smallest positive x-intercept.

Working:

 

 

Answer:

..................................................................

(Total 3 marks)

 


 

24.     For the function f : x   sin 2x + cos x, find the possible values of sin x for which f¢ (x) = 0.

Working:

 

 

Answer:

..................................................................

(Total 3 marks)

 

 

25.     For what values of m is the line y = mx + 5 a tangent to the parabola y = 4 – x2?

Working:

 

 

Answer:

..................................................................

(Total 3 marks)

 


 

26.     The tangent to the curve y2  x3 at the point P(1, 1) meets the x-axis at Q and the y-axis at R.
Find the ratio PQ : QR.

Working:

 

 

Answer:

..................................................................

(Total 3 marks)

 

 

27.     Solve the differential equation xy  = 1 + y2, given that y = 0 when x = 2.

Working:

 

 

Answer:

..................................................................

(Total 3 marks)

 


 

28.     (a)     Sketch and label the curves

          y = x2 for –2 £ x £ 2, and y = –ln x for 0 < x £ 2.

(2)

(b)     Find the x-coordinate of P, the point of intersection of the two curves.

(2)

(c)     If the tangents to the curves at P meet the y-axis at Q and R, calculate the area of the triangle PQR.

(6)

(d)     Prove that the two tangents at the points where x = a, a > 0, on each curve are always perpendicular.

(4)

(Total 14 marks)

 


 

29.     A uniform rod of length l metres is placed with its ends on two supports A, B at the same horizontal level.

          If y (x) metres is the amount of sag (ie the distance below [AB]) at a distance x metres from support A, then it is known that

.

(a)     (i)      Let z = . Show that  = .

(ii)     Given that  = z and w (0) = 0, find w (x).

(iii)    Show that w satisfies  = (x2 lx), and that w (l) = w (0) = 0.

(8)

(b)     Find the sag at the centre of a rod of length 2.4 metres.

(2)

(Total 10 marks)

 


 

30.     (a)     Let y = , where 0 < a < b.

(i)      Show that = .

(4)

(ii)     Find the maximum and minimum values of y.

(4)

(iii)    Show that the graph of y = , 0 < a < b cannot have a vertical asymptote.

(2)

(b)     For the graph of for 0 £ x £ 2p,

(i)      write down the y-intercept;

(ii)     find the x-intercepts m and n, (where m < n) correct to four significant figures;

(iii)    sketch the graph.

(5)

(c)     The area enclosed by the graph of  and the x-axis from x = 0 to x = n is denoted by A.  Write down, but do not evaluate, an expression for the area A.

(2)

(Total 17 marks)

 


 

31.     If   f (x) = ln(2x – 1), x > , find

(a)     f¢ (x);

(b)     the value of x where the gradient of f (x) is equal to x.

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 3 marks)

 

 

32.     Find .

Working:

 

 

Answer:

…………………………………………..

(Total 3 marks)

 


 

33.     The equation of motion of a particle with mass m, subjected to a force kx can be written as , where x is the displacement and v is the velocity. When x = 0, v = v0. dx Find v, in terms of v0, k and m, when x = 2.

Working:

 

 

Answer:

…………………………………………..

(Total 3 marks)

 

 

34.     Find the value of a such that  Give your answer to 3 decimal places.

Working:

 

 

Answer:

…………………………………………..

(Total 3 marks)

 


 

35.     Find the x-coordinate, between –2 and 0, of the point of inflexion on the graph of the function . Give your answer to 3 decimal places.

Working:

 

 

Answer:

…………………………………………..

(Total 3 marks)

 

 

36.     Find the area of the region enclosed by the graphs of y = sin x and y = x2 – 2x + 1.5, where
0
£ x £ p.

Working:

 

 

Answer:

…………………………………………..

(Total 3 marks)

 


 

37.     The diagram shows a sketch of the graph of y = f¢ (x) for a £ x £ b.

 

          On the grid below, which has the same scale on the x-axis, draw a sketch of the graph of
y = f (x) for a
£ x £ b, given that f (0) = 0 and f (x) ³ 0 for all x. On your graph you should clearly indicate any minimum or maximum points, or points of inflexion.

 

 

Working:

 

 

 

 

(Total 3 marks)

 

 

38.     (a)     Sketch and label the graphs of and  for
0 £ x £ 1, and shade the region A which is bounded by the graphs and the y-axis.

(3)

(b)     Let the x-coordinate of the point of intersection of the curves y = f (x) and y = g (x) be p.

Without finding the value of p, show that

< area of region A < p.

(4)

(c)     Find the value of p correct to four decimal places.

(2)

(d)     Express the area of region A as a definite integral and calculate its value.

(3)

(Total 12 marks)

 

 

39.     Let f (t) =

Working:

 

 

Answer:

..........................................................................

(Total 3 marks)

 


 

40.     Find the gradient of the tangent to the curve 3x2 + 4y2 = 7 at the point where x = 1 and y > 0.

Working:

 

 

Answer:

..........................................................................

(Total 3 marks)

 

 

41.     Let . Find the area enclosed by the graph of f and the x-axis.

Working:

 

 

Answer:

..........................................................................

(Total 3 marks)

 


 

42.     Find the general solution of the differential equation  where 0 < x < 5, and k is a constant.

Working:

 

 

Answer:

..........................................................................

(Total 3 marks)

 

 

43.     An astronaut on the moon throws a ball vertically upwards. The height, s metres, of the ball, after t seconds, is given by the equation s = 40t + 0.5at2, where a is a constant. If the ball reaches its maximum height when t = 25, find the value of a.

Working:

 

 

Answer:

..........................................................................

(Total 3 marks)

 


 

44.     The function f is given by

(a)     Find f ¢(x).

          Let xn be the value of x where the (n + l)th maximum or minimum point occurs, n Î . (ie x0 is the value of x where the first maximum or minimum occurs, x1 is the value of x where the second maximum or minimum occurs, etc).

(b)     Find xn in terms of n.

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 3 marks)

 

 

45.     Let f (x) = x cos 3x.

(a)     Use integration by parts to show that

(3)


 

(b)     Use your answer to part (a) to calculate the exact area enclosed by f (x) and the x-axis in each of the following cases. Give your answers in terms of p.

(i)     

(ii)    

(iii)   

(4)

 

(c)     Given that the above areas are the first three terms of an arithmetic sequence, find an expression for the total area enclosed by f (x) and the x-axis for , where n Î +. Give your answers in terms of n and p.

(4)

(Total 11 marks)

 

 

46.     Let

(a)     Sketch the graph of f (x). (An exact scale diagram is not required.)

          On your graph indicate the approximate position of

(i)      each zero;

(ii)     each maximum point;

(iii)    each minimum point.

(4)

 

(b)     (i)      Find f¢ (x), clearly stating its domain.

(ii)     Find the x-coordinates of the maximum and minimum points of f (x), for
–1 < x < 1.

(7)


 

(c)     Find the x-coordinate of the point of inflexion of f (x), where x > 0, giving your answer correct to four decimal places.

(2)

(Total 13 marks)

 

 

47.     The line y = 16x – 9 is a tangent to the curve y = 2x3 + ax2 + bx – 9 at the point (1,7). Find the values of a and b.

Working:

 

 

Answer:

..........................................................................

(Total 3 marks)

 


 

48.     Consider the function y = tan x – 8 sin x.

(a)     Find

(b)     Find the value of cos x for which

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 3 marks)

 


 

49.     Consider the tangent to the curve y = x3 + 4x2 + x – 6.

(a)     Find the equation of this tangent at the point where x = –1.

(b)     Find the coordinates of the point where this tangent meets the curve again.

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 3 marks)

 

 

50.     A point P(x, x2) lies on the curve y = x2. Calculate the minimum distance from the point  to the point P.

Working:

 

 

Answer:

..........................................................................

(Total 3 marks)

 


 

51.     Let θ be the angle between the unit vectors a and b, where 0 < θ < π. Express |ab| in terms of .

Working:

 

 

Answer:

..........................................................................

(Total 3 marks)

 

 

52.     A sample of radioactive material decays at a rate which is proportional to the amount of material present in the sample. Find the half-life of the material if 50 grams decay to 48 grams in 10 years.

Working:

 

 

Answer:

..........................................................................

(Total 3 marks)

 


 

53.     Find the area enclosed by the curves  and y = , given that –3 £ x £ 3.

Working:

 

 

Answer:

..........................................................................

(Total 3 marks)

 

 

54.     Let y = sin (kx) – kx cos (kx), where k is a constant.

          Show that

(Total 3 marks)

 

 

55.     A particle is moving along a straight line so that t seconds after passing through a fixed point O on the line, its velocity v (t) m s–1 is given by

          .

(a)     Find the values of t for which v(t) = 0, given that 0 £ t £ 6.

(3)

(b)     (i)      Write down a mathematical expression for the total distance travelled by the particle in the first six seconds after passing through O.

(ii)     Find this distance.

(4)

(Total 7 marks)

 

 

56.     Consider the function , where x Î +.

(a)     Show that the derivative

(3)

(b)     Sketch the function f (x), showing clearly the local maximum of the function and its horizontal asymptote. You may use the fact that

(5)

(c)     Find the Taylor expansion of f (x) about x = e, up to the second degree term, and show that this polynomial has the same maximum value as f (x) itself.

(5)

(Total 13 marks)

 

 

57.     A particle is projected along a straight line path. After t seconds, its velocity v metres per second is given by v = .

(a)     Find the distance travelled in the first second.

(b)     Find an expression for the acceleration at time t.

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 6 marks)

 


 

58.     (a)     Use integration by parts to find ln x dx.

(b)     Evaluate

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 6 marks)

 


 

59.     The figure below shows part of the curve y = x3 – 7x2 + 14x – 7. The curve crosses the x-axis at the points A, B and C.

(a)     Find the x-coordinate of A.

(b)     Find the x-coordinate of B.

(c)     Find the area of the shaded region.

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(c)       ..................................................................

(Total 6 marks)

 


 

60.     A curve has equation xy3 + 2x2y = 3. Find the equation of the tangent to this curve at the point (1, 1).

Working:

 

 

Answer:

..................................................................................

(Total 6 marks)

 

 

61.     A rectangle is drawn so that its lower vertices are on the x-axis and its upper vertices are on the curve y = . The area of this rectangle is denoted by A.

(a)     Write down an expression for A in terms of x.

(b)     Find the maximum value of A.

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 6 marks)

 


 

62.     The diagram below shows the graph of y1 = f (x), 0 ² x ² 4.

 

          On the axes below, sketch the graph of y2 =  marking clearly the points of inflexion.

(Total 6 marks)

 


 

63.     The function f is defined by

f (x) =

(a)     (i)      Find an expression for f¢ (x), simplifying your answer.

(ii)     The tangents to the curve of f (x) at points A and B are parallel to the x-axis. Find the coordinates of A and of B.

(5)

(b)     (i)      Sketch the graph of y = f¢ (x).

(ii)     Find the x-coordinates of the three points of inflexion on the graph of f.

(5)

(c)     Find the range of

(i)      f;

(ii)     the composite function f ° f.

(5)

(Total 15 marks)

 

 

64.     A particle moves in a straight line with velocity v, in metres per second, at time t seconds, given by

         v(t) = 6t2 – 6t, t ³ 0

          Calculate the total distance travelled by the particle in the first two seconds of motion.

Working:

 

 

Answer:

..........................................................................

(Total 6 marks)

 

 

65.     Find

Working:

 

 

Answer:

..........................................................................

(Total 6 marks)

 

 

66.     Find the x-coordinate of the point of inflexion on the graph of y = xex, – 3 £ x £ 1.

Working:

 

 

Answer:

..........................................................................

(Total 6 marks)

 


 

67.     Air is pumped into a spherical ball which expands at a rate of 8 cm3 per second (8 cm3 s–1). Find the exact rate of increase of the radius of the ball when the radius is 2 cm.

Working:

 

 

Answer:

..........................................................................

(Total 6 marks)

 

 

68.     The point B(a, b) is on the curve f (x) = x2 such that B is the point which is closest to A(6, 0). Calculate the value of a.

Working:

 

 

Answer:

..........................................................................

(Total 6 marks)

 


 

69.     The tangent to the curve y = f (x) at the point P(x, y) meets the x-axis at Q (x – 1, 0). The curve meets the y-axis at R(0, 2). Find the equation of the curve.

Working:

 

 

Answer:

..........................................................................

(Total 6 marks)

 

 

70.     (a)     On the same axes sketch the graphs of the functions, f (x) and g (x), where

f (x) = 4 – (1 – x)2, for – 2 £ x £ 4,

g (x) = ln (x + 3) – 2, for – 3 £ x £ 5.

(2)

(b)     (i)      Write down the equation of any vertical asymptotes.

(ii)     State the x-intercept and y-intercept of g (x).

(3)

(c)     Find the values of x for which f (x) = g (x).

(2)

(d)     Let A be the region where f (x) ³ g (x) and x ³ 0.

(i)      On your graph shade the region A.

(ii)     Write down an integral that represents the area of A.

(iii)    Evaluate this integral.

(4)

(e)     In the region A find the maximum vertical distance between f (x) and g (x).

(3)

(Total 14 marks)

 

 

71.     A curve has equation x3 y2 = 8. Find the equation of the normal to the curve at the point (2, 1).

Working:

 

 

Answer:

.........................................................................

(Total 6 marks)

 

 

72.     A particle moves in a straight line. Its velocity v m s–1 after t seconds is given by v = sin t. Find the total distance travelled in the time interval [0, 2p].

Working:

 

 

Answer:

.........................................................................

(Total 6 marks)

 


 

73.     Using the substitution y = 2 – x, or otherwise, find dx.

Working:

 

 

Answer:

.........................................................................

(Total 6 marks)

 

 

74.     The diagram below shows the graph of y1 = f (x).


 

          On the axes below, sketch the graph of y2 = ½f¢ (x)½.

(Total 6 marks)

 

 

75.     The function f is defined by f (x) = , for x > 0.

(a)     (i)      Show that

          f¢ (x) =

(ii)     Obtain an expression for f ²(x), simplifying your answer as far as possible.

(5)

(b)     (i)      Find the exact value of x satisfying the equation f ¢(x) = 0

(ii)     Show that this value gives a maximum value for f (x).

(4)

(c)     Find the x-coordinates of the two points of inflexion on the graph of f.

(3)

(Total 12 marks)

 


 

76.     The function f with domain  is defined by f (x) = cos x + sin x.

          This function may also be expressed in the form R cos (xa) where R > 0 and 0 < α < .

(a)     Find the exact value of R and of α.

(3)

(b)     (i)      Find the range of the function f.

(ii)     State, giving a reason, whether or not the inverse function of f exists.

(5)

(c)     Find the exact value of x satisfying the equation f (x) =

(3)

(d)     Using the result

          = ln½sec x + tan x½+ C, where C is a constant,

          show that

         

(5)

(Total 16 marks)

 


 

77.     Consider the function f (t) = 3 sec2t + 5t.

(a)     Find f¢ (t).

(b)     Find the exact values of

(i)      f (p);

(ii)     f¢ (p);

Working:

 

 

Answers:

(a)          ...........................................................

(b)   (i)   ……………………………………...

       (ii)  ……………………………………...

(Total 6 marks)

 

 

78.     Calculate the area enclosed by the curves y = ln x and y = ex – e, x > 0.

Working:

 

 

Answer:

.........................................................................

(Total 6 marks)

 

 

79.     Consider the equation 2xy2 = x2y + 3.

(a)     Find y when x = 1 and y < 0.

(b)     Find  when x = 1 and y < 0.

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 6 marks)

 


 

80.     Let y = e3x sin (px).

(a)     Find .

(b)     Find the smallest positive value of x for which  = 0.

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 6 marks)

 


 

81.     An airplane is flying at a constant speed at a constant altitude of 3 km in a straight line that will take it directly over an observer at ground level. At a given instant the observer notes that the angle q is p radians and is increasing at  radians per second. Find the speed, in kilometres per hour, at which the airplane is moving towards the observer.

 

Working:

 

 

Answer:

.........................................................................

(Total 6 marks)

 

 

82.     A curve has equation f (x) = , a ¹ 0, b > 0, c > 0.

(a)     Show that f² (x) = .

(4)

(b)     Find the coordinates of the point on the curve where f² (x) = 0.

(2)

(c)     Show that this is a point of inflexion.

(2)

(Total 8 marks)

 

 

83.     Given that  = ex – 2x and y = 3 when x = 0, find an expression for y in terms of x.

Working:

 

 

Answer:

.........................................................................

(Total 6 marks)

 

 

84.     The point P(1, p), where p > 0, lies on the curve 2x2y + 3y2 = 16.

(a)     Calculate the value of p.

 

(b)     Calculate the gradient of the tangent to the curve at P.

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 6 marks)

 


 

85.     (a)     Find , giving your answer in terms of m.

(b)     Given that  = 1, calculate the value of m.

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 6 marks)

 

 

86.     The function f is defined by f : x  3x.

          Find the solution of the equation f ²(x) = 2.

Working:

 

 

Answer:

.........................................................................

(Total 6 marks)

 


 

87.     Find .

Working:

 

 

Answer:

.........................................................................

(Total 6 marks)

 

 

88.     The following diagram shows an isosceles triangle ABC with AB = 10 cm and AC = BC. The vertex C is moving in a direction perpendicular to (AB) with speed 2 cm per second.

          Calculate the rate of increase of the angle  at the moment the triangle is equilateral.

Working:

 

 

Answer:

.........................................................................

(Total 6 marks)

 

 

89.     The temperature T °C of an object in a room, after t minutes, satisfies the differential equation

 = k(T – 22), where k is a constant.

(a)     Solve this equation to show that T = Aekt + 22, where A is a constant.

(3)

(b)     When t = 0, T = 100, and when t = 15, T = 70.

(i)      Use this information to find the value of A and of k.

(ii)     Hence find the value of t when T = 40.

(7)

(Total 10 marks)

 

 

90.     If y = ln (2x – 1), find .

Working:

 

 

Answer:

.........................................................................

(Total 6 marks)

 


 

91.     Find the total area of the two regions enclosed by the curve y = x3 – 3x2 – 9x +27 and the line y = x + 3.

Working:

 

 

Answer:

.........................................................................

(Total 6 marks)

 

 

92.     Find the equation of the normal to the curve x3 + y3 – 9xy = 0 at the point (2, 4).

Working:

 

 

Answer:

.........................................................................

(Total 6 marks)

 


 

93.     Using the substitution 2x = sin q, or otherwise, find

Working:

 

 

Answer:

.........................................................................

(Total 6 marks)

 

 

94.     A closed cylindrical can has a volume of 500 cm3. The height of the can is h cm and the radius of the base is r cm.

(a)     Find an expression for the total surface area A of the can, in terms of r.

(b)     Given that there is a minimum value of A for r > 0, find this value of r.

Working:

 

 

Answers:

(a)       ..................................................................

(b)       ..................................................................

(Total 6 marks)

 


 

95.     Consider the complex number z = cosq + i sinq.

(a)     Using De Moivre’s theorem show that

zn +  = 2 cos nq.

(2)

(b)     By expanding  show that

cos4q = (cos 4q + 4 cos 2q + 3).

(4)

(c)     Let g (a) = .

(i)      Find g (a).

(ii)     Solve g (a) = 1

(5)

(Total 11 marks)

 

 

96.     Consider the differential equation .

(a)     Use the substitution x = eq to show that

.

(3)

(b)     Find.

(4)

(c)     Hence find y in terms of q, if y =  when q = 0.

(4)

(Total 11 marks)

 


 

97.     The displacement s metres of a moving body B from a fixed point O at time t seconds is given by

s = 50t – 10t2 + 1000.

(a)     Find the velocity of B in m s–1.

(b)     Find its maximum displacement from O.

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

(Total 6 marks)

 


 

98.     The function f ′ is given by f ′(x) = 2sin .

(a)     Write down f ″(x).

(b)     Given that f  = 1, find f (x).

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

.....................................................................................................................................

(Total 6 marks)

 


 

99.     Find the gradient of the normal to the curve 3x2y + 2xy2 = 2 at the point (1, –2).

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

(Total 6 marks)

 


 

100.   Use the substitution u = x + 2 to find .

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

(Total 6 marks)

 


 

101.   The line L is given by the parametric equations x = 1 – λ, y = 2 – 3λ, z = 2. Find the coordinates of the point on L which is nearest to the origin.

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

(Total 6 marks)

 


 

102.   Solve the differential equation x y2 = 1, given that y = 0 when x = 2. Give your answer in the form y = f (x).

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

...............................................................................................................................................

(Total 6 marks)

 


 

103.   The function f is defined on the domain x ³ 1 by f (x) = .

(a)     (i)      Show, by considering the first and second derivatives of f, that there is one maximum point on the graph of f.

(ii)     State the exact coordinates of this point.

(9)

(iii)    The graph of f  has a point of inflexion at P. Find the x-coordinate of P.

(3)

          Let R be the region enclosed by the graph of f, the x-axis and the line x = 5.

(c)     Find the exact value of the area of R.

(6)

(d)     The region R is rotated through an angle 2π about the x-axis. Find the volume of the solid of revolution generated.

(3)

(Total 21 marks)

 

 

104.   The function f is given by f (x) = , x ¹ 0. There is a point of inflexion on the graph of f at the point P. Find the coordinates of P.

(Total 6 marks)

 


 

105.   (a)     Express as partial fractions .

(b)     Hence or otherwise, find dx.

(Total 6 marks)

 


 

106.   An experiment is carried out in which the number n of bacteria in a liquid, is given by the formula n = 650 ekt, where t is the time in minutes after the beginning of the experiment and k is a constant. The number of bacteria doubles every 20 minutes. Find

(a)     the exact value of k;

(b)     the rate at which the number of bacteria is increasing when t = 90.

(Total 6 marks)

 


 

107.   Let f (x) = , x ¹ –2.

(a)     Find f ¢(x).

(b)     Solve f ¢(x) > 2.

(Total 6 marks)

 

 

108.   The normal to the curve y = + ln x2, for x ¹ 0, k Î , at the point where x = 2, has equation 3x + 2y = b, where b Î . Find the exact value of k.

(Total 6 marks)

 

 

109.   The function f is defined by f (x) = epx(x + 1), here p Î .

(a)     (i)      Show that f ¢(x) = epx(p(x + 1) + 1).

(ii)     Let f (n)(x) denote the result of differentiating f (x) with respect to x, n times.
Use mathematical induction to prove that

f (n)(x) = pn–1epx (p(x + 1) + n), n Î +.

(7)

(b)     When p = , there is a minimum point and a point of inflexion on the graph of f. Find the exact value of the x-coordinate of

(i)      the minimum point;

(ii)     the point of inflexion.

(4)

(c)     Let p = . Let R be the region enclosed by the curve, the x-axis and the lines x = –2 and x = 2. Find the area of R.

(2)

(Total 13 marks)

 


 

110.   The diagram shows a trapezium OABC in which OA is parallel to CB. O is the centre of a circle radius r cm. A, B and C are on its circumference. Angle  = θ.

          Let T denote the area of the trapezium OABC.

(a)     Show that T =  (sin θ + sin 2θ).

(4)

          For a fixed value of r, the value of T varies as the value of θ varies.

(b)     Show that T takes its maximum value when θ satisfies the equation
4 cos2 θ + cos θ 2 = 0, and verify that this value of T is a maximum.

(5)

(c)     Given that the perimeter of the trapezium is 75 cm, find the maximum value of T.

(6)

(Total 15 marks)

 


 

111.   The curve y =  x2 – 3x + 4 has a local maximum point at P and a local minimum point at Q. Determine the equation of the straight line passing through P and Q, in the form ax + by + c = 0, where a, b, c Î .

(Total 6 marks)

 

 

112.   Find  cos x dx.

(Total 6 marks)

 


 

113.   Let f  be a cubic polynomial function. Given that f (0) = 2, f ′ (0) = –3, f (1) = f ′ (1) and f ′′ (–1) = 6, find f (x).

(Total 6 marks)

 


 

114.   The following diagram shows the points A and B on the circumference of a circle, centre O, and radius 4 cm, where  = q. Points A and B are moving on the circumference so that q is increasing at a constant rate.

          Given that the rate of change of the length of the minor arc AB is numerically equal to the rate of change of the area of the shaded segment, find the acute value of q.

(Total 6 marks)

 


 

115.   (a)     Given that  calculate the value of a, of b and of c.

(5)

(b)     (i)      Hence, find I =

(ii)     If I =  when x = 1, calculate the value of the constant of integration giving your answer in the form p + q ln r where p, q, rÎ

(7)

(Total 12 marks)

 

 

116.   (a)     Write down the term in xr in the expansion of (x + h)n, where 0 £ r £ n, nÎ +.

(1)

(b)     Hence differentiate xn, nÎ +, from first principles.

(5)

(c)     Starting from the result xn ´ x–n = 1, deduce the derivative of x–n, nÎ +.

(4)

(Total 10 marks)

 


 

117.   A man PF is standing on horizontal ground at F at a distance x from the bottom of a vertical wall GE. He looks at the picture AB on the wall. The angle BPA is q.

          Let DA = a, DB = b, where angle  is a right angle. Find the value of x for which tan q is a maximum, giving your answer in terms of a and b. Justify that this value of x does give a maximum value of tan q.

(Total 9 marks)

 


 

118.   Let f (x) = 3x2 x + 4. Find the values of m for which the line y = mx + 1 is a tangent to the graph of f.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

119.   Let f (x) = 20.5x and g (x) = 3–0.5x + . Let R be the region completely enclosed by the graphs of f and g, and the y-axis. Find the area of R.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

120.   Find  sin x dx.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

121.   Let f (x) = cos3 (4x + 1), 0 £ x £ 1.

(a)     Find f ′ (x).

(b)     Find the exact values of the three roots of f ′ (x) = 0.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

122.   Given that 3x+y = x3 + 3y, find .

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

123.   Particle A moves in a straight line, starting from OA, such that its velocity in metres per second for 0 £ t £ 9 is given by

                          vA =

          Particle B moves in a straight line, starting from OB, such that its velocity in metres per second for 0 £ t £ 9 is given by

                          vB = e0.2t.

(a)     Find the maximum value of vA, justifying that it is a maximum.

(5)

(b)     Find the acceleration of B when t = 4.

(3)

          The displacements of A and B from OA and OB respectively, at time t are sA metres and sB metres. When t = 0, sA = 0, and sB = 5.

(c)     Find an expression for sA and for sB, giving your answers in terms of t.

(7)

(d)     (i)      Sketch the curves of sA and sB on the same diagram.

(ii)     Find the values of t at which sA = sB.

(8)

(Total 23 marks)

 


 

124.   Let f be the function defined for x >  by f (x) = ln (3x + 1).

(a)     Find f ′(x).

(b)     Find the equation of the normal to the curve y = f (x) at the point where x = 2.

Give your answer in the form y = ax + b where a, bÎ .

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

125.   Solve the differential equation

                              (x + 2)2  = 4xy     (x > –2)

given that y =1 when x = −1.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

126.   The region enclosed by the curves y2 = kx and x2 = ky, where k > 0, is denoted by R. Given that the area of R is 12, find the value of k.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

127.   The radius and height of a cylinder are both equal to x cm. The curved surface area of the cylinder is increasing at a constant rate of 10 cm2/sec. When x = 2, find the rate of change of

(a)     the radius of the cylinder;

(b)     the volume of the cylinder.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

128.   The function f is defined by f (x) = , x ³1.

(a)     Find f ′(x) and f ′′(x), simplifying your answers.

(6)

(b)     (i)      Find the exact value of the x-coordinate of the maximum point and justify that this is a maximum.

(ii)     Solve f ′′(x) = 0, and show that at this value of x, there is a point of inflexion on the graph of f.

(iii)    Sketch the graph of f, indicating the maximum point and the point of inflexion.

(11)

The region enclosed by the x-axis, the graph of f and the line x = 3 is denoted by R.

(c)     Find the volume of the solid of revolution obtained when R is rotated through 360° about the x-axis.

(3)

(d)     Show that the area of R is  (4 – ln 3).

(6)

(Total 26 marks)

 


 

129.   Let y = cosq + i sinq.

(a)     Show that  = iy.

          [You may assume that for the purposes of differentiation and integration, i may be treated in the same way as a real constant.]

(3)

(b)     Hence show, using integration, that y = eiq.

(5)

(c)     Use this result to deduce de Moivre’s theorem.

(2)

(d)     (i)      Given that  = a cos5q + b cos3q + c cosq, where sinq  0, use de Moivre’s theorem with n = 6 to find the values of the constants a, b and c.

(ii)     Hence deduce the value of .

(10)

(Total 20 marks)

 


 

130.   Let f (x) = x ln xx, x > 0.

(a)     Find f ′ (x).

(b)     Using integration by parts find

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

131.   The function f is defined as f (x) = sin x ln x for xÎ [0.5, 3.5].

(a)     Write down the x-intercepts.

(b)     The area above the x-axis is A and the total area below the x-axis is B. If A = kB, find k.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

132.   Let y = x arcsin x, xÎ ] −1, 1[. Show that  =

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

133.   Given that exy y2 ln x = e for x ³ 1, find  at the point (1, 1).

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

134.   Solve the differential equation (x2 + 1)  xy = 0 where x > 0, y > 0, given that y =1 when x = 1.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

135.   The following table shows the values of two functions f and g and their first derivatives when x =1 and x = 0.

x

f (x)

f ′ (x)

g (x)

g′ (x)

0

4

1

–4

5

1

–2

3

–1

2

(a)     Find the derivative of  when x = 0.

(b)     Find the derivative of f (g (x) + 2x) when x =1.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

136.   The volume of a solid is given by

                                     V =

          At the time when the radius is 3 cm, the volume is 1p cm3, the radius is changing at a rate of 2 cm/min and the volume is changing at a rate of 204p cm3/min. Find the rate of change of the height at this time.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

137.   Solve the differential equation  = 2xy2 given that y = 1 when x = 0.

Give your answer in the form y = f (x).

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

138.   A particle moves in a straight line. At time t seconds, its displacement from a fixed point O is s metres, and its velocity, v metres per second, is given by v = 3t2 − 4t + 2, t ³ 0. When t = 0, s = −3. Find the value of t when the particle is at O.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

139.   The graph of y = sin (3x) for 0 £ x £  is is rotated through 2p radians about the x-axis.

Find the exact volume of the solid of revolution formed.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

140.   For x ³  let f (x) = x2 ln (x +1) and g (x) =

(a)     Sketch the graphs of f and g on the grid below.

(b)     Let A be the region completely enclosed by the graphs of f and g.

Find the area of A.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

141.   The function f is defined by f (x) =  for x ³ b where bÎ .

(a)     Show that f ¢ (x) =

(b)     Hence find the smallest exact value of b for which the inverse function f −1 exists. Justify your answer.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

142.   Find  dx, expressing your answer in exact form.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

143.   Car A is travelling on a straight east-west road in a westerly direction at 60 km h−1. Car B is travelling on a straight north-south road in a northerly direction at 70 km h−1. The roads intersect at the point O. When Car A is x km east of O, and Car B is y km south of O, the distance between the cars is z km.

Find the rate of change of z when Car A is 0.8 km east of O and Car B is 0.6 km south of O.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

144.   (a)     Using the formula for cos (A + B) prove that cos2q =

(3)

(b)     Hence, find

(4)

Let f (x) = cos x and g (x) = sec x for xÎ .

Let R be the region enclosed by the two functions.

(c)     Find the exact values of the x-coordinates of the points of intersection.

(4)

(d)     Sketch the functions f and g and clearly shade the region R.

(3)

The region R is rotated through 2p about the x-axis to generate a solid.

(e)     (i)      Write down an integral which represents the volume of this solid.

(ii)     Hence find the exact value of the volume.

(10)

(Total 24 marks)

 


 

145.   A television screen, BC, of height one metre, is built into a wall. The bottom of the television screen at B is one metre above an observer’s eye level. The angles of elevation (, ) from the observer’s eye at O to the top and bottom of the television screen are a and b radians respectively. The horizontal distance from the observer’s eye to the wall containing the television screen is x metres. The observer’s angle of vision () is q radians, as shown below.

(a)     (i)      Show that q = arctan  – arctan

(ii)     Hence, or otherwise, find the exact value of x for which q is a maximum and justify that this value of x gives the maximum value of q.

(iii)    Find the maximum value of q.

(17)

(b)     Find where the observer should stand so that the angle of vision is 15°.

(5)

(Total 22 marks)

 


 

146.   (a)     Use integration by parts to show that

         

(4)

Consider the differential equation  y cos x = sin x cos x.

(b)     Find an integrating factor.

(3)

(c)     Solve the differential equation, given that y = − 2 when x = 0. Give your answer in the form y = f (x).

(9)

(Total 16 marks)

 


 

147.   The diagram below shows the shaded region A which is bounded by the axes and part of the curve y2 = 8a (2ax), a > 0. Find in terms of a the volume of the solid formed when A is rotated through 360° around the x-axis.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

148.   Given that y =  find

(a)    

(3)

(b)     the exact values of the x-coordinates of the points of inflexion on the graph of y = , justifying that they are points of inflexion.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(3)

(Total 6 marks)

 


 

149.   Find

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

150.   Solve the differential equation  given that y =  when x =

Give your answer in the form y =  where aÎ +.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

151.   (a)     A curve is defined by the implicit equation 2xy + 6x2 − 3y2 = 6.

Show that the tangent at the point A with coordinates  has gradient

(6)

(b)     The line x =1 cuts the curve at point A, with coordinates , and at point B.

Find, in the form r =

(i)      the equation of the tangent at A;

(ii)     the equation of the normal at B.

(10)

 

(c)     Find the acute angle between the tangent at A and the normal at B.

(4)

(Total 20 marks)

 

 

152.   The acceleration in m s–2 of a particle moving in a straight line at time t seconds, t > 0, is given by the formula a =  When t =1, the velocity is 8 m s–1.

(a)     Find the velocity when t = 3.

(6)

(b)     Find the limit of the velocity as t ® ¥.

(1)

(c)     Find the exact distance travelled between t =1 and t = 3.

(4)

(Total 11 marks)

 


 

153.   If f (x) = x, x > 0,

(a)     find the x-coordinate of the point P where f ′ (x) = 0;

(2)

(b)     determine whether P is a maximum or minimum point.

(3)

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 5 marks)

 


 

154.   Find the area between the curves y = 2 + xx2 and y = 2 − 3x + x2.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 7 marks)

 


 

155.   The region bounded by the curve y =  and the lines x = 1, x = e, y = 0 is rotated

through 2p radians about the x-axis.

Find the volume of the solid generated.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 12 marks)

 


 

156.   The function f is defined by f (x) = x e2x.

          It can be shown that f (n) (x) = (2n x + n 2n−1) e2x for all nÎ+, where f (n) (x) represents the nth derivative of f (x).

(a)     By considering f (n) (x) for n =1 and n = 2, show that there is one minimum point P on the graph of f, and find the coordinates of P.

(7)

(b)     Show that f has a point of inflexion Q at x = −1.

(5)

(c)     Determine the intervals on the domain of f where f is

(i)      concave up;

(ii)     concave down.

(2)

(d)     Sketch f, clearly showing any intercepts, asymptotes and the points P and Q.

(4)

(e)     Use mathematical induction to prove that f (n) (x) = (2nx + n2n−1) e2x for all nÎ+, where f (n) (x) represents the nth derivative of f (x).

(9)

(Total 27 marks)

 

 

157.   A gourmet chef is renowned for her spherical shaped soufflé. Once it is put in the oven, its volume increases at a rate proportional to its radius.

(a)     Show that the radius r cm of the soufflé, at time t minutes after it has been put in the oven, satisfies the differential equation  where k is a constant.

(5)

(b)     Given that the radius of the soufflé is 8 cm when it goes in the oven, and 12 cm when it’s cooked 30 minutes later, find, to the nearest cm, its radius after 15 minutes in the oven.

(8)

(Total 13 marks)

 


 

158.   Consider the curve with equation x2 + xy + y2 = 3.

(a)     Find in terms of k, the gradient of the curve at the point (−1, k).

(5)

(b)     Given that the tangent to the curve is parallel to the x-axis at this point, find the value of k.

(1)

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

159.   Show that

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

160.   A normal to the graph of y = arctan (x − 1), for x > 0, has equation y = −2x + c, where cÎ.

Find the value of c.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 


 

161.   André wants to get from point A located in the sea to point Y located on a straight stretch of beach. P is the point on the beach nearest to A such that AP = 2 km and PY = 2 km. He does this by swimming in a straight line to a point Q located on the beach and then running to Y.

When André swims he covers 1 km in  minutes. When he runs he covers 1 km in 5 minutes.

(a)     If PQ = x km, 0 £ x ≤ 2, find an expression for the time T minutes taken by André to reach point Y.

(4)

(b)     Show that

(3)

(c)     (i)      Solve

(ii)     Use the value of x found in part (c) (i) to determine the time, T minutes, taken for André to reach point Y.

(iii)    Show that  and hence show that the time found in part (c) (ii) is a minimum.

(11)

(Total 18 marks)

 


 

162.   Find the gradient of the tangent to the curve x3 y2 = cos (πy) at the point (−1, 1).

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 12 marks)

 


 

163.   By using an appropriate substitution find

                            

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 6 marks)

 

 

164.   A family of cubic functions is defined as fk (x) = k2x3 kx2 + x, kÎ+.

(a)     Express in terms of k

(i)      f k (x) and f k (x);

(ii)     the coordinates of the points of inflexion Pk on the graphs of fk.

(6)

(b)     Show that all Pk lie on a straight line and state its equation.

(2)

(c)     Show that for all values of k, the tangents to the graphs of fk at Pk are parallel, and find the equation of the tangent lines.

(5)

(Total 13 marks)

 

 

165.   The curve y = ex x +1 intersects the x-axis at P.

(a)     Find the x-coordinate of P.

(2)

(b)     Find the area of the region completely enclosed by the curve and the coordinate axes.

(3)

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 5 marks)

 


 

166.   Consider the curve with equation f (x) =  for x < 0.

Find the coordinates of the point of inflexion and justify that it is a point of inflexion.

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

(Total 7 marks)

 


 

167.   A particle moves in a straight line in a positive direction from a fixed point O.

The velocity v m s−1, at time t seconds, where t ³ 0, satisfies the differential equation

                               

The particle starts from O with an initial velocity of 10 m s−1.

(a)     (i)      Express as a definite integral, the time taken for the particle’s velocity to decrease from 10 m s−1 to 5 m s−1.

(ii)     Hence calculate the time taken for the particle’s velocity to decrease from 10 m s−1 to 5 m s−1.

(5)

(b)     (i)      Show that, when v > 0, the motion of this particle can also be described by the differential equation  where x metres is the displacement from O.

(ii)     Given that v = 10 when x = 0, solve the differential equation expressing x in terms of v.

(iii)    Hence show that v =

(14)

(Total 19 marks)

 

 

168.   (a)     Using l’Hopital’s Rule, show that  = 0.

(2)

(b)     Determine

(5)

(c)     Show that the integral   is convergent and find its value.

(2)

(Total 9 marks)

 

 

AssignmentWork Payment (USD)
Content